5.0 References

Amended Settlement Agreement. 2001. United States District Court Southern District of Florida, Case No. 88-1886 CIV-HOEVELEVER, USA et al., vs. SFWMD and FDEP.

Gann, D., and J. Richards. 2009. Determine the effectiveness of plant communities classification from satellite imagery for the Greater Everglades Freshwater Wetlands & Community Abundance, Distribution and Hydroperiod Analysis for WCA 2A. South Florida Water Management District, RECOVER Evaluation Team Support, Greater Everglades Sub-team Consulting Services, West Palm Beach, FL.

Gardinali, P., A. Fernandez, G. Rand, J. Carriger, T. Hoang, and J. Castro. 2010. The presence of endosulfan sulfate residues in water, sediment and biological samples in South Florida:

La Puma, D. A., J. L. Lockwood, and M. J. Davis. 2007. Endangered species management requires a new look at the benefit of fire: The Cape Sable seaside sparrow in the Everglades

Patterson, K., and R. Finck. 1999. Tree islands of the WCA3 aerial photointerpretation and trend analysis project summary report. Report to The South Florida Water Management District by Geonex Corporation, St. Petersburg, FL.

Ross, M.S., S. Mitchell–Bruker, J.P. Sah, S. Stothoff, P.L. Ruiz, D.L. Reed, K. Jayachandran,

SFER 2010. 2010 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL.

Troxler, T., C. Coronado-Molina, F.H. Sklar, S. Krupa, and P.R. Wetzel. In review. Loss of tree island patches represents additional nutrient source to a large wetland landscape: Implications for environmental management.

USFWS. 1999. South Florida Multi-Species Recovery Plan, Atlanta, Georgia.

Appendix 1: List of Core Team Members and Affiliation

1. **Dr. Rena Borkhataria**: Wading Bird Ecologist and Research Scientist in the Department of Wildlife Ecology and Conservation at the University of Florida

2. **Dr. Daniel Childers**: Wetland Ecosystem Ecologist and Professor in the Global Institute of Sustainability at Arizona State University

3. **Dr. Stephen Davis**: Wetland Ecologist at the Everglades Foundation

4. **Dr. Victor Engel**: Ecohydrologist at Everglades National Park

5. **Dr. Evelyn Gaiser**: Aquatic Ecologist and Associate Professor in the Biology Department and Southeast Environmental Research Center at Florida International University

6. **Dr. Judson Harvey**: Chief of the Hydroecology of Flowing Waters project of the National Research Program of the U.S. Geological Survey

7. **Dr. Thomas Lodge**: Environmental Consultant, Everglades Ecologist and author of *The Everglades Handbook, Understanding the Ecosystem*

8. **Dr. Bobby McCormick**, Economist, Professor Emeritus in the John Walker Department of Economics at Clemson University

9. **Dr. Fernando Miralles-Wilhelm**: Hydrologist, Water Resources Engineer and Associate Professor in the Department of Civil and Environmental Engineering at Florida International University

10. **Dr. G. Melodie Naja**: Water Quality Scientist at the Everglades Foundation

11. **Dr. Todd Osborne**: Soil Biogeochemist and Research Assistant Professor in the Soil and Water Science Department at the University of Florida

12. **Dr. Rosanna Rivero**: Spatial Scientist at the Everglades Foundation

13. **Dr. Michael Ross**: Terrestrial Ecosystem Ecologist and Associate Professor in the Earth & Environment Department and Southeast Environmental Research Center at Florida International University

14. **Dr. Joel Trexler**: Ecologist, Director of Marine Sciences and Professor in the Biology Department and Southeast Environmental Research Center at Florida International University
15. **Dr. Thomas Van Lent**: Hydrologist, Engineer and Senior Scientist at the Everglades Foundation

16. **Dr. Paul Wetzel**: Landscape and Ecosystem Ecologist in the Department of Biology at Smith College
Appendix 2: Report of SERES Presentation and Project Activities at GEER 2010, Naples, FL

The Greater Everglades Ecosystem Restoration (GEER) meeting was held in Naples, FL from July 12-16, 2010. This meeting provided an opportunity for members of the core team to meet and discuss project timelines and tasks. GEER also provided an important forum to present SERES project objectives and Key Science Management Questions (KSMQs) to the greater Everglades science and management community. Over all, the meeting was a huge success. It is worth pointing out that SERES core team members (15 total) appeared as authors on a combined 75 abstracts at GEER, for an average of 5 abstract citations per core team member. Five of our core team members appeared on 8 or more abstracts each.

SERES Core Team Meetings

The core team met on Monday July 12 from 2-4 PM in the Acacia VII room of the Naples Grande Beach Resort. Nearly all core team members—including a recent addition to the team, Dr. Rena Borkhataria (UF/IFAS)—were in attendance. Those not in attendance included Drs. Evelyn Gaiser (FIU) and Fernando Miralles-Wilhelm (FIU). Dr. Gaiser arrived early on Tuesday July 13 and was briefed on the meeting later that afternoon by Dr. Stephen Davis (EF). Dr. Miralles-Wilhelm did not attend GEER. Dr. Jay Sah a post-doc to Dr. Mike Ross (FIU) also attended the meeting.

The purpose of the Monday core team meeting was to discuss the current state of the KSMQ document (i.e., Task 1-1 deliverable), progress made in interviewing managers for the document, and the need to provide another “layer” or executive summary that simplified the technical aspects of the document. The objective was to have this deliverable submitted by August 1. Announcement of the newly revived Alfresco website was an agenda item to make core team members aware that the document management system was up and running again. Lastly, the bulk of the meeting pertained to discussion about the literature reviews or white papers (i.e., Task 1-2 deliverable).
Core team members felt that these documents should be 20-25 pages in length and that they should serve as the scientific/quantitative basis for the analysis of options in Year 2 of the project. The team felt that each document should be organized around a central theme or thesis statement that clearly identifies the goal of each paper. We all agreed that this was not necessarily the same as the questions around which core team members were organized. Instead, the thesis statement of each paper could be more general in nature as long as the review provided sufficient scope and capacity to address the intent of each KSMQ. Our plan was to have this deliverable completed and submitted by early October—putting us back on the original schedule.

In May 2010, we assigned each of the core team members to working groups that would be responsible for developing each of the literature reviews. Up until GEER, only one of the groups (Food webs and community dynamics) had initiated work on an outline for the literature review and two others (Hydrologic restoration and Soils) had held conference call meetings. Therefore, the Monday meeting at GEER was not just a way to initiate discussions among the entire core group but also to stimulate work at the level of each working group. In fact, beyond the Monday meeting, two other working groups (Water quality and Landscape pattern and heterogeneity) met independently for at least an hour each to develop outlines, set internal deadlines, and assign tasks.

For each working group, the ultimate deadline for literature reviews is October 1. Prior to that, each document will have undergone two levels of internal review: (1.) within each working group and (2.) across the entire core team. Upon completion, each document will be reviewed externally and, possibly, submitted for peer-reviewed journal publication.

On Thursday Jul 15, towards the end of the GEER meeting, several members of the SERES core team met with key members of the MARES team including: Dr. William Nuttle (Eco-Hydrology), Larry Pugh (NOAA), Chris Kelble (NOAA), and Dr. Jim Fourqurean (FIU). The purpose of this discussion was to get to know more about both projects and begin thinking about ways that these projects can collaborate with one another in the future. See notes taken from this meeting by Dr. Nuttle appended below.
SERES Session and Presentation

On Wednesday July 14, the SERES-led session on “Everglades Science in Support of Restoration—What do decision makers need?” began with session chair Dr. Joel Trexler’s introduction of Dr. Paul Wetzel who gave the SERES project presentation titled: “Everglades Science in Support of Restoration—Synthesis of Everglades Restoration and Ecosystem Services (SERES)”. Dr. Wetzel’s presentation covered the objectives and KSMQs developed from earlier discussions with managers and science managers. It was followed by a 20-minute discussion period—an opportunity for the members of the greater Everglades science and management community to provide input into our process, objectives, and KSMQs.

The remainder of the session included a thought-provoking talk by Dr. Christopher McVoy of the South Florida Water Management District. The final talk was cancelled, so the remainder of the afternoon session was used for SERES project discussion.

Discussion and questions about the SERES project pertained mostly to the distinction between SERES and RECOVER as well as the legitimacy of the KSMQs. Dr. John Ogden complimented the team on their presentation, but he stated that the Science Coordination Team and RECOVER are already set up to do what SERES is attempting to do. Dr. Nick Aumen (NPS) agreed and further stated that how the questions are framed will dictate the outcome of the study. His concern focused entirely on the question that dealt with the tradeoff between water quality and quantity, and he went on to state that “a lot of smart people have been working on this” and “we should have answers to this already”. Further, he stated that the water quality question is a policy question and not a science question and therefore coordination with other groups (presumably RECOVER) is imperative.

The continued discussion following Dr. McVoy’s talk moved towards the areas of ecosystem services and science synthesis. A comment from Bill Reck (USDA) indicated the need to consider the consistency and reliability of units when comparing ecosystem services/benefits across different ecosystem components. Liberta Scotto (USFWS) further stressed the need to know the economic benefits of different scenarios of Everglades restoration, and Dr. Richard Weiskoff
(UM) indicated that this information has not been pulled together. Finally, Dr. Aumen steered the discussion towards the importance of synthesis, noting that we (scientists) do not invest enough time in science synthesis and that the National Center for Ecological Analysis and Synthesis (NCEAS) would be a good model to use for future syntheses.

The second half of the SERES-led session on “Everglades Science in Support of Restoration—What do decision makers need?” was moderated by Dr. Tom Van Lent and included 4 talks on different Everglades-related models/tools including: the ATLSS Florida Panther model (Lou Gross), an individual-based roseate spoonbill model (Jon Cline), a ENP-led vegetation succession model (Steve Friedman), and a presentation on EverVIEW a data manipulation and visualization package that would be targeted towards resource managers (Craig Conzelmann).

Post-SERES Session

Following the SERES presentation, there was much discussion about the study, its potential conflicts with RECOVER, and the legitimacy of the questions being asked. No one questioned the qualifications of the team. In terms of the questions put forth, the SERES team felt these were an accurate representation of the questions asked by science managers from the key state and Federal resource management agencies. This interpretation was confirmed through subsequent with senior/executive managers at these same organizations who were asking essentially the same questions put forth by the SERES team.

Thursday’s two-part session on “Linking Science to Decision-Making as Managers Are Listening” was well attended and was followed by a panel discussion that continued some of the discussion that followed the SERES presentation. When asked what organizational or process challenges could be made to strengthen the linkages between science and decision-making, the panel responded. Paul Souza (USFWS) quickly pointed to the South Florida Water Management District’s River of Grass planning process as a role model for this strengthening these linkages. Greg May (SFERTF) suggested that having a feedback loop from science to managers (i.e., a circular or integrated process) was essential. Stephanie Johnson (NRC) described a chief scientist that would serve no agency but would be an interface between science and managers (some-
thing akin to an “Everglades Czar”). Liberta Scotto suggested a model similar to the land grant university system of extension agents that serve as science/technology communicators between rural landowners and researchers, only these “Everglades extension agents” would communicate the latest science and technology to managers.

Regarding conflicts between SERES and RECOVER, there has been much discussion and concern among a subset of the Everglades Science Community. We acknowledge the similarities between both efforts, as they are both collaborative science synthesis efforts that seek to understand the changes in Everglades ecosystem state as a result of restoration and management activities. However, they differ in several ways, including:

- SERES is funded by the Department of Interior through the Critical Ecosystems Studies Initiative. RECOVER is funded largely through USACE by authorization of the 2000 WRDA.
- SERES is a two-year study while RECOVER is an ongoing program of CERP.
- SERES is a co-development effort that seeks to synthesize science for resource managers. RECOVER utilizes and organizes science to oversee and best implement the CERP.
- SERES considers only the freshwater Everglades Protection Area from just below the EAA through the freshwater portion of ENP. RECOVER spans the entirety of the South Florida Water Management District sans the Kissimmee River.
- SERES structure is based on an expanding concentric hierarchy, with a small core working group of mostly academic scientists that lies within the Greater Everglades Science Community. Also, it is led by a not-for-profit, science-based organization, the Everglades Foundation. RECOVER is a multi-agency body led by the RLG, which is comprised of co-leads from the SFWMD and USACE (lead agencies) and representatives from each of 10 other state, Federal, and tribal organizations.
Notes on an Informal Meeting between the MARES and SERES Projects

Attending:

- Bill Nuttle: wnuttle@eco-hydrology.com
- Steve Davis: sdavis@evergladesfoundation.org
- Dan Childers: dan.childers@asu.edu
- Larry Pugh: Larry.Pugh@noaa.gov
- Carol Mitchell: carol_Mitchell@nps.gov
- Paul Wetzel: pwtzel@smith.edu
- Jud Harvey: jwharvey@usgs.gov
- Chris Kelble: chris.kelble@noaa.gov
- Tom VanLent: tvanlent@evergladesfoundation.org
- Jim Fourqurean: fourqure@fiu.edu

This was an opportunity for participants to compare activities planned for the next two years or so and look for opportunities for coordination between the two projects. The MARES project is developing science-based tools for ecosystem management, i.e. conceptual ecological models and quantitative indicators, for coastal marine regions of South Florida. The SERES project is compiling and synthesizing scientific information that addresses questions/issues/needs identified by managers.

Opportunities for cooperation and coordination exist in the area of developing science communications skills and in expanding the scope of ecosystem science to include economic valuation of ecosystem services.

Science communications skills

We discussed the possibility of engaging the University of Maryland [IAN program](http://www.ianprogram.org) for guidance on developing communications strategies and tools. In particular, the recent book by IAN press *Integrating and Applying Science* discusses science communications to support ecosystem
management. It may be possible to engage Bill Dennison and his team to advise and train us on science communications practices that address the needs of our projects.

Economic valuation of ecosystem services

Feedback received by the SERES project points to the importance to ecosystem managers to have this type of information to draw on in planning/justifying restoration and protection activities. The SERES project does not (yet) include people who could perform such an analysis.

The MARES project has three economists and a sociologist among its PIs as part of a commitment to integrate human dimensions into the conceptualization of coastal marine ecosystems. However, the scope of the needed economic analysis falls outside of the scope of the funded MARES project.

We discussed the possibility of launching a third project that would develop information for managers on the value to the South Florida economy of a protected/restored/managed ecosystem. This study would be funded separately from the MARES and SERES projects. It would be coordinated with and share information with these studies, and it the MARES project.

Next steps

We agreed to look for an opportunity for holding of combined all-hands meeting of the MARES and SERES projects.

Project websites:

MARES - http://sofla-mares.org/
Appendix 3: A Key to Acronyms

Acid Volatile Sulfides (AVS)
Across Trophic Level System Simulation (ATLSS)
Alligator Population Index (API)
Alligator Population Model (APM)
Best Management Practices (BMPs)
Bulk Density (BD)
Cape Sable Seaside Sparrow (CSSS)
Carbon (C)
Cattail Habitat Improvement Project (CHIP)
Central and Southern Florida Project (C&SF project)
Comprehensive Everglades Restoration Plan (CERP)
Conceptual Ecological Model (CEM)
Core Foraging Area (CFA)
Decompartmentalization (DECOMP)
Dissolved Inorganic Nitrogen (DIN)
Dissolved Inorganic Phosphorus (DIP)
Dissolved Organic Carbon (DOC)
Dissolved Organic Matter (DOM)
Dissolved Organic Nitrogen (DON)
Dissolved Organic Phosphorus (DOP)
Dynamic Model for Stormwater Treatment Area (DMSTA)
El Niño-Southern Oscillation (ENSO)
Evapotranspiration (ET)
Everglades Depth Estimation Network (EDEN)
Everglades Agricultural Area (EAA)
Everglades Assessment and Monitoring Program Study (R-EMAP)
Everglades Landscape Model (ELM)
Everglades Landscape Vegetation Model (ELVM)
Everglades National Park (ENP)
Everglades Nutrient Removal Project (ENR)
Everglades Phosphorus Gradient Model (EPGM)
Everglades Protection Area (EPA)
Everglades Restoration Transitional Plan (ERTP-1)
Everglades Soil Mapping project (ESM)
Everglades Water Quality Model (EWQM)
Everglades Wetland Hydrodynamic Model (EWHM)
Florida Coastal Everglades Long-Term Ecological Research Program (FCE LTER)
Florida Department of Environmental Protection (FDEP)
Florida International University (FIU)
Habitat Suitability Index (HSI)
Hydrologic Simulation Engine (HSE)
Indicators of Ecosystem Status (IES)
Inorganic Phosphorus (IP)
Inorganic Total Phosphorus (TPi)
Landscape Subunits (LSU)
Loss On Ignition (LOI)
Loxahatchee Impoundment Landscape Assessment (LILA)
Loxahatchee National Wildlife Refuge (LNWR)
Management Simulation Engine (MSE)
Moisture Content (MC)
Monitoring and Assessment Plan (MAP)
Natural System Model (NSM)
Natural System Regional Simulation Model (NSRSM)
Nitrogen (N)
Normalized Difference Vegetation Index (NDVI)
Normalized Difference Water Index (NDWI)
Organic Matter (OM)
Particulate Nitrogen (PN)
Particulate Inorganic Phosphorus (PIP)
Particulate Organic Carbon (POC)
Particulate Organic Phosphorus (POP)
Parts Per Billion (PPB)
Performance Measures (PMs)
Phosphorus (P)
Primary Sampling Units (PSU)
Regional Simulation Model- Water Quality (RSMWQ)
Restoration Coordination & Verification (RECOVER)
Rod Surface Elevation Table (RSET)
Science Coordination Team (SCT)
Sediment Erosion Table (SET)
Shark River Slough (SRS)
Simple Refuge Screening Model (SRSM)
Soluble Reactive Phosphorus (SRP)
South Florida Environmental Report (SFER)
South Florida Regional Simulation Model (RSM)
South Florida Wading Bird Report (SFWBR)
South Florida Water Management District (SFWMD)
South Florida Water Management Model (SFWMM)
Spatially Explicit Species Indices (SESI)
Spatial Modeling Environmental (SME)
Stormwater Treatment Area (STA)
Stormwater Treatment Area Design Model (STADM)
Sulfate Reducing Bacteria (SRB)
Synthesis of Everglades Restoration and Ecosystem Services (SERES)
Systematic Reconnaissance Flights (SRFs)
Taylor Slough (TS)
Terminal Electron Acceptors (TEAs)
Total Aluminum (TAl)
Total Calcium (TCa)
Total Carbon (TC)
Total Iron (TFe)
Total Magnesium (TMg)
Total Nitrogen (TN)
Total Organic Carbon (TOC)
Total Phosphorus (TP)
Unmanned Aerial Systems (UAS)
Urban Growth Boundary (UGB)
U.S. Army Corps of Engineers (USACOE)
U.S. Department of Agriculture (USDA)
U.S. Environmental Protection Agency (USEPA)
U.S. Fish and Wildlife Service (USFWS)
Vegetation Classification System for Southern Florida’s National Parks and Preserves (VCSF-NA)
Water Conservation Areas (WCAs)
Water Resources Defense Development Act (WRDA)
Water Year (WY)
Wetland Water Quality Model (WWQM)
Appendix 4: Species List

We follow the convention of capitalizing the common names of birds, but not other animals unless they include proper names. Comprehensive lists of Everglades taxa can be found in Lodge (2010).

<table>
<thead>
<tr>
<th>Latin Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals - Birds</td>
<td></td>
</tr>
<tr>
<td>Ajaia ajaja</td>
<td>Roseate Spoonbills</td>
</tr>
<tr>
<td>Ammodramus maritimus mirabilis</td>
<td>Cape Sable Seaside Sparrow</td>
</tr>
<tr>
<td>Ardea alba</td>
<td>Great Egret</td>
</tr>
<tr>
<td>Ardea herodias</td>
<td>Great Blue Heron</td>
</tr>
<tr>
<td>Bubulcus ibis</td>
<td>Cattle Egret</td>
</tr>
<tr>
<td>Egretta caerulea</td>
<td>Little Blue Heron</td>
</tr>
<tr>
<td>Egretta thula</td>
<td>Snowy Egret</td>
</tr>
<tr>
<td>Egretta tricolor</td>
<td>Tricolored Heron</td>
</tr>
<tr>
<td>Eudocimus albus</td>
<td>White Ibis</td>
</tr>
<tr>
<td>Mycteria americana</td>
<td>Wood Stork</td>
</tr>
<tr>
<td>Plegadis falcinellus</td>
<td>Glossy Ibis</td>
</tr>
<tr>
<td>Porphyrio porphyrio</td>
<td>Purple Swamphen</td>
</tr>
<tr>
<td>Rostrhamus sociabilis</td>
<td>Snail Kite</td>
</tr>
<tr>
<td>Threskiornis aethiopicus</td>
<td>Sacred Ibis</td>
</tr>
<tr>
<td>Animals - Mammals</td>
<td></td>
</tr>
<tr>
<td>Felis concolor coryi</td>
<td>Florida panther</td>
</tr>
<tr>
<td>Neofiber alleni</td>
<td>round-tailed muskrat</td>
</tr>
<tr>
<td>Odocoileus virginianus</td>
<td>white-tailed deer</td>
</tr>
<tr>
<td>Animals - Fish</td>
<td></td>
</tr>
<tr>
<td>Amia calva</td>
<td>bowfin</td>
</tr>
<tr>
<td>Belanesox belizanus</td>
<td>pike killifish</td>
</tr>
<tr>
<td>Centropomus undecimalis</td>
<td>snook</td>
</tr>
<tr>
<td>Cichlasoma urphthalmus</td>
<td>Mayan cichlid</td>
</tr>
<tr>
<td>Erimyzon succetta</td>
<td>lake chubsuckers</td>
</tr>
<tr>
<td>Hemichromis leternaux</td>
<td>jewelfish</td>
</tr>
<tr>
<td>Heterandria formosa</td>
<td>least killifish</td>
</tr>
<tr>
<td>Jordanella florida</td>
<td>flagfish</td>
</tr>
<tr>
<td>Lepisostetus platyrhincus</td>
<td>Florida gar</td>
</tr>
<tr>
<td>Lepomis macrochirus</td>
<td>bluegill</td>
</tr>
<tr>
<td>Lepomis punctatus</td>
<td>spotted sunfish</td>
</tr>
<tr>
<td>Animal/Marine Life</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Lucania goodei</td>
<td>bluefin killifish</td>
</tr>
<tr>
<td>Micropterus salmoides</td>
<td>largemouth bass</td>
</tr>
<tr>
<td>Oreochromis aureus</td>
<td>blue tilapia</td>
</tr>
</tbody>
</table>

Animals – Reptiles and Amphibians

<table>
<thead>
<tr>
<th>Animal/Marine Life</th>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator mississippiensis</td>
<td>American alligator</td>
<td></td>
</tr>
<tr>
<td>Anolis carolinensis</td>
<td>green anole</td>
<td></td>
</tr>
<tr>
<td>Chrysemys nelsoni</td>
<td>Florida redbelly turtle</td>
<td></td>
</tr>
<tr>
<td>Kinosternon bauri</td>
<td>striped mud turtle</td>
<td></td>
</tr>
<tr>
<td>Rana grylio</td>
<td>pig frog</td>
<td></td>
</tr>
</tbody>
</table>

Animals - Invertebrates

<table>
<thead>
<tr>
<th>Animal/Marine Life</th>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palaemonetes paludosus</td>
<td>riverine grass shrimp</td>
<td></td>
</tr>
<tr>
<td>Procambarus fallax</td>
<td>slough crayfish</td>
<td></td>
</tr>
</tbody>
</table>

Plants - Vascular

<table>
<thead>
<tr>
<th>Plant</th>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annona glabra</td>
<td>pond apple</td>
<td></td>
</tr>
<tr>
<td>Argythamnia blodgettii</td>
<td>Blodgett’s wild mercury</td>
<td></td>
</tr>
<tr>
<td>Bursera simaruba</td>
<td>gumbo limbo</td>
<td></td>
</tr>
<tr>
<td>Casuarina equisetifolia</td>
<td>Australian pine</td>
<td></td>
</tr>
<tr>
<td>Celtis laevigata</td>
<td>sugarberry</td>
<td></td>
</tr>
<tr>
<td>Chrysobalanus icaco</td>
<td>coco plum</td>
<td></td>
</tr>
<tr>
<td>Cladium jamaicense</td>
<td>sawgrass</td>
<td></td>
</tr>
<tr>
<td>Coccoloba diversifolia</td>
<td>tietongue</td>
<td></td>
</tr>
<tr>
<td>Digitaria pauciflora</td>
<td>two-spoke crabgrass</td>
<td></td>
</tr>
<tr>
<td>Eichhornia crassipes</td>
<td>water hyacinth</td>
<td></td>
</tr>
<tr>
<td>Eleocharis spp</td>
<td>spike rush</td>
<td></td>
</tr>
<tr>
<td>Eugenia axillaris</td>
<td>white stopper</td>
<td></td>
</tr>
<tr>
<td>Ficus aurea</td>
<td>strangler fig</td>
<td></td>
</tr>
<tr>
<td>Ilex cassine</td>
<td>dahoon</td>
<td></td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>sweetbay</td>
<td></td>
</tr>
<tr>
<td>Melaleuca quinquenervia</td>
<td>melaleuca</td>
<td></td>
</tr>
<tr>
<td>Muhlenbergia spp</td>
<td>muhlygrass</td>
<td></td>
</tr>
<tr>
<td>Myrica cerifera</td>
<td>wax myrtle</td>
<td></td>
</tr>
<tr>
<td>Myrsine floridana</td>
<td>Guianese colicwood</td>
<td></td>
</tr>
<tr>
<td>Paspalum spp</td>
<td>crowngrass</td>
<td></td>
</tr>
<tr>
<td>Persea borbonia</td>
<td>redbay</td>
<td></td>
</tr>
<tr>
<td>Pistia stratiotes</td>
<td>water lettuce</td>
<td></td>
</tr>
<tr>
<td>Rhynchospora spp</td>
<td>beaksedge</td>
<td></td>
</tr>
<tr>
<td>Sagittaria lancifolia</td>
<td>bulltongue arrowhead</td>
<td></td>
</tr>
<tr>
<td>Salix caroliniana</td>
<td>coastal plain willow</td>
<td></td>
</tr>
<tr>
<td>Sambucus canadensis</td>
<td>American black elderberry</td>
<td></td>
</tr>
<tr>
<td>Schinus terebinthifolius</td>
<td>Brazilian pepper</td>
<td></td>
</tr>
<tr>
<td>Schizachyrium spp</td>
<td>little bluestem</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Schoenus spp</td>
<td>bogrush</td>
<td></td>
</tr>
<tr>
<td>Sideroxylon foetidissimum</td>
<td>false mastic</td>
<td></td>
</tr>
<tr>
<td>Sideroxylon reclinatum subsp austral-floridense</td>
<td>Florida bully</td>
<td></td>
</tr>
<tr>
<td>Sideroxylon salicifolium</td>
<td>white bully</td>
<td></td>
</tr>
<tr>
<td>Simarouba glauca</td>
<td>paradisetree</td>
<td></td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>bald cypress</td>
<td></td>
</tr>
<tr>
<td>Typha domingensis</td>
<td>Southern cattail</td>
<td></td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>broadleaf cattail</td>
<td></td>
</tr>
<tr>
<td>Utricularia</td>
<td>bladderwort</td>
<td></td>
</tr>
</tbody>
</table>

Algae

Gomphonema parvulum

Mougeotia spp.

Nitzschia amphibia